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Abstract
Minimal cognitive impairment (MCI), a potential precursor to Alzheimer’s disease (AD), may be a heterogeneous entity
consisting of distinct subtypes. To evaluate this hypothesis, we applied unsupervised machine-learning to a subset of the
Alzheimer’s disease Neuroimaging Initiative (ADNI) data set, and detected MCI subtypes with distinct clinical correlates. Our
subtype-detection system consists of preprocessing, clustering, validation, and visualization modules. We applied this system to
data fromMCI subjects in the ADNI-2 cohort. The resulting six subtypes demonstrated different profiles with respect to cognitive
and laboratory assessment, potentially indicating differing clinical trajectories and treatment responses.
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1 Introduction

Identifying and diagnosing diseases based on history and
physical examination is a practice that predates Hippocrates.
As non-observational biomarkers of disease, such as temper-
ature and blood pressure measurement, clinical and anatomic
pathology laboratory tests, and radiologic examinations, have
become available, biomedical researchers have used these da-
ta to characterize subtypes of disease categories such as infec-
tion and cancer; we refer to this process as subtype detection.
Researchers and clinicians have characterized subtypes by
noticing differences among patients thought to have the same

disorder. For example, patients presenting with skin lesions
may experience no adverse outcomes, or may go on to devel-
op disseminated disease; histological analysis of these lesions
identifies biomarkers (e.g., atypical mitoses) that are associat-
ed with these outcome subtypes.

Neuropsychiatric disorders, such as schizophrenia, have
historically been classified based on clinical symptoms and
signs [1], as laboratory tests have not been found to be
prognostically useful for some disorders. Although clinical
scales have been employed to diagnose and characterize
Parkinson’s disease [2] and Alzheimer’s disease [3], some of
the clinical features that underpin the diagnosis of neuropsy-
chiatric disorders may be subjective. The advent of noninva-
sive methods for interrogating brain structure and connectiv-
ity, such as T1-weighted magnetic-resonance imaging (MRI),
diffusion tensor imaging (DTI) and resting-state functional
magnetic-resonance imaging (rs-fMRI), promise objective
biomarkers for characterizing neuropsychiatric disorders, not-
withstanding problems related to reproducibility across sites
and equipment manufacturers. Similarly, the advent of inex-
pensive, noninvasive genomic interrogation, including whole-
genome sequencing [4] and microarray analysis of gene ex-
pression [5, 6] enable researchers to evaluate the genetic con-
tributions to neuropsychiatric disorders.

In addition to reproducibility, one of the factors limiting
characterization of neuropsychiatric disorders based on clini-
cal, connectivity, and genetic biomarkers is the immense
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numbers of image and genetic variables from which biomed-
ical researchers would select those that identify a distinct clin-
ical entity. Recent advances in data science and computer
hardware have greatly extended the utility of computational
approaches to subtype detection. The task of identifying novel
subgroups in a data set is an unsupervised machine-learning
problem; that is, the data provided to the machine-learning
algorithm do not include the group to which each individual
(or sample) belongs [7]. Our hypothesis is that unsupervised
machine learning can derive useful subgroups from large,
complex biomedical data sets. We test this hypothesis in the
domain of minimal cognitive impairment (MCI), by designing
and implementing a platform for the automated subtype de-
tection based on T1-weighted MRI and positron-emission to-
mography (PET) image data, and for validation of these sub-
types based on clinical and model-performance features.

2 Methods

We developed a machine-learning system to detect subtypes
based on multimodal biomarkers. The proposed system has
four major components: preprocessing, clustering, validation,
and visualization. The preprocessing module includes opera-
tions required before machine-learning algorithms can be ap-
plied to the data. For example, for multimodal image data such
as T1-weighted MRI, DTI, rs-fMRI, and PET, preprocessing
might include registration to a common coordinate space,
skull stripping, intensity correction, and segmentation, to gen-
erate image-derived features. Additional operations, such as
normalization to 0 mean and unit variance, also occur during
preprocessing. The clustering module groups subjects into
subtypes. The validation module associates the generated sub-
types with variables not used for clustering, such as clinical
assessment scales. The visualization module depicts the re-
sults to facilitate the characterization of subtypes. Each mod-
ule is extensible. For example, we can extend the clustering
module to include deep learning based clustering algorithms.

The proposed system is based on R and Python, which are
freely available; it does not depend on proprietary third-party
libraries. The proposed system is cross-platform and supports
Windows, Mac OS, and Unix/Linux.

2.1 Subjects

We obtained the data used in the preparation of this manu-
script from the ADNI database (adni.loni.usc.edu), Principal
Investigator Michael W.Weiner, MD. For additional informa-
tion about ADNI, visit www.adni-info.org. We limited this
analysis to the ADNI-2 [8] cohort, and in particular to those
subjects with MCI. In addition, we used data from ADNI-2
normal control subjects during preprocessing only, as de-
scribed below.

2.2 MRI-Derived Features

We analyzed the baseline T1-weighted MRI data acquired
from MCI subjects in the ADNI-2 [8] data set. We included
volumes of the hippocampus, entorhinal cortex, fusiform gy-
rus, medial temporal lobe, whole brain, ventricle, and intra-
cranial volume, generated by the UCSF pipeline; we
downloaded these data from the ADNIwebsite. As these proc-
essed values are available to download, we did not invoke our
image-preprocessing pipeline.

2.3 PET-Derived Features

Researchers have found that fluoro-deoxy glucose (FDG) [9]
and Florbetapir (AV-45) [9, 10] PET standardized uptake
values (SUVs) are associated with MCI and Alzheimer’s dis-
ease status and progression. We therefore included the AV-45
standardized uptake value ratio (SUVR) averaged across fron-
tal cortex, anterior cingulate, precuneus cortex, and parietal
cortex, relative to the cerebellum; and average FDG-PET
SUVs for angular, temporal, and posterior cingulate regions.
Note that ADNI-2 combines left- and right-sided structures,
such as ventricles and brain regions, into a single structure.
These data were downloaded from the ADNI website. As with
the MRI-derived variables, these processed PET-derived
values are available to download, so we did not invoke our
image-preprocessing pipeline.

2.4 Preprocessing

As described above, since this data set includes structure-wise
structural MRI and PET SUV data, rather than unprocessed
image data, there was no need to preprocess images for this
analysis. Similar to the procedure described in [11], we
preprocessed the quantitative MRI volumetric and PET SUV
data by removing zero-variance variables and variables that
didn’t significantly differ between controls and MCI subjects;
regressing out age and sex effects from the remaining vari-
ables; and then scaling to 0 mean and unit variance.

2.5 Unsupervised Machine Learning

To detect MCI subtypes, we employed the unsupervised
machine-learning framework described in [11], which is based
on clustering. Clustering is defined as the problem of
partitioning objects into clusters (groups). Objects in the same
cluster are similar, whereas objects in different clusters are
dissimilar. An important problem in clustering is to determine
the number of clusters. We employed Affinity Propagation
Clustering (APC) [12], in particular the apcluster package in
R, to estimate the number of clusters. We then provided the
number of clusters to the BIRCH clustering algorithm [13], in
particular the sklearn.cluster package in Python, to detectMCI
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subtypes based on these image-derived variables. We used the
BIRCH algorithm for clustering because it’s a memory-effi-
cient, online-learning algorithm. The BIRCH algorithm con-
structs a balanced tree of Clustering Features (CFs) based on
the cluster centroids. A CF is a data structure that represents a
cluster by storing the number of elements, their linear sum,
and their squared sum. For a new object, BIRCH descends the
tree by following its closest CF until a leaf node is reached.
The new object is either merged into its closest leaf-CF or
inserted as a new leaf.

2.6 Validation

To determine clinical correlates of subtypes derived from ma-
chine learning, we evaluated associations among MCI sub-
types and clinical assessment, genetic variables, and clinical-
laboratory values, based on effect size. For a continuous var-
iable, we computed one-way ANOVA statistics, and η2 as the
measure of effect size. For categorical variables, we computed
chi-squared statistics, and Cramer’s phi as the measure of
effect size.

2.7 Visualization

We used principal component analysis (PCA) to project raw
data onto a 2D space in order to visualize the detected sub-
types, where the x-axis is the first principal component and the
y-axis is the second principal component. We also plotted the
profiles of the input image-derived variables in a heatmap. In
this heatmap, each element is the average intensity of the
variable across all subjects in a cluster; rows are variables
and columns are subtypes.

3 Results

3.1 Subtypes

We removed whole-brain and intracranial volumes from
analysis because they didn’t differ across control and MCI
groups. Our final feature set included 7 variables: vol-
umes of the hippocampus (Hippocampus), entorhinal cor-
tex (Entorhinal), fusiform gyrus (Fusiform), medial tem-
poral lobe (MedTemp), and ventricles (Ventricle); average
FDG-PET (FDG) of angular, temporal, and posterior cin-
gulate gyri, and AV-45 SUVR (AV-45) averaged across
frontal cortex, anterior cingulate, precuneus cortex, and
parietal cortex, relative to the cerebellum. Of the 469
ADNI-2 MCI subjects, 360 had no missing data for these
variables. We used data from 294 ADNI-2 control sub-
jects only to eliminate variables for which there was no
difference between controls and MCI subjects, as de-
scribed in Section 2.4.

Unsupervised machine learning detected six MCI subtypes
(n = 33, 76, 28, 154, 30, and 39, respectively), which were
well separated by the first two principal components
(Fig. 1). All image-derived features demonstrated differential
patterns across subtypes. In Fig. 1, we ranked features by
effect size (η2); ventricular and hippocampal volumes had
the largest effect sizes. The heatmap in Fig. 1 indicates that
subtype 3 is based primarily on atrophy (i.e., low cortical
volumes and high ventricular volumes), low FDG SUV (i.e.,
low cortical glucose metabolism), and intermediate AV-45
SUVR. Subtype 6 is similar to subtype 3, except for higher
AV-45 and lower ventricular volumes. Subtype 5 is charac-
terized by relatively high cortical volumes and FDG SUV, and
low AV-45 SUVR and ventricular volume. Subtypes 1, 2 and
4 are characterized by intermediate cortical volume, but differ
with respect to AV-45 (high in subtype 2), ventricular vol-
umes (greater in subtype 1 than in any other subtype) and, to
a lesser extent, with respect to FDG SUV (slightly higher in
subtype 4).

3.2 Validation

To determine the potential clinical relevance of our MCI sub-
types, we analyzed subtype associations with the following
clinical assessments: the 11-item version of the Alzheimer’s
Disease Assessment Scale–Cognitive subscale (ADAS11;
higher score is worse) [14]; ADAS13 (higher is worse) is an
extension of ADAS11 with additional delayed recall and digit
cancellation tasks; ADNI modified Preclinical Alzheimer’s
Cognitive Composite (PACC) [15] with Digit Symbol
Substitution (PACC_digit; lower is worse); ADNI modified
Preclinical Alzheimer’s Cognitive Composite (PACC) with
Trials B (PACC_trials_b; lower is worse); the Rey Auditory
Verbal Learning Test Learning [16] Percent Forgetting
(RAVLT_perc_forgetting; higher is worse); and the Rey
A u d i t o r y V e r b a l L e a r n i n g T e s t I mm e d i a t e
(RAVLT_immediate; lower is worse).

We found that MCI subtype is significantly associated with
these clinical variables (Table 1). In particular, subtypes 3 and
6, which have image-derived profiles indicative of atrophy
and increased amyloid deposition, also have relatively in-
creased ADAS11 and ADAS13 scores, which indicate prob-
lems with recall; lower PACC scores, which are indicative of
relative cognitive decline; relatively high RAVLT percent for-
getting and relatively low RAVLT immediate recall, which
are indicative of impaired short-term memory. In contrast,
subtype 5, which has an image-derived profile indicative of
normal brain volumes andmetabolism, had the lowest average
ADAS11 and ADAS13 scores, the second lowest RAVLT
percent forgetting score, and the highest PACC and second-
highest RAVLT immediate-recall scores.
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Figure 2 further elucidates MCI subtype differences.
Subtypes 3 and 6 differ significantly from the other subtypes
with respect to functional measures ADAS11 and ADAS13.
With respect to PACC_digit and PACC_trials_b, there appear
to be 3 groups, consisting of subtypes 3 and 6 (low scores), 1
and 2 (intermediate scores), and 4 and 5 (high scores). Subtype
4 manifested lower RAVLT_perc_forgetting than most other
subtypes, whereas subtypes 3 and 6 manifested modestly in-
creased RAVLT_perc_forgetting scores. Subtype 4 exceeded
most other subtypes with respect to RAVLT_immediate.

The Apolipoprotein E (APOE) gene is polymorphic, with
three major isoforms: ε2, ε3, and ε4. Two APOE ε4 alleles
confer high risk, one APOE ε4 allele confers intermediate
risk, and zero alleles indicate relatively low risk of developing
AD [17]. In the ADNI-2 cohort, APOE status is indicated as
zero, one, or two APOE ε4 alleles. We found that image-
derived MCI subtype is significantly associated with APOE
status (chi-square p < 0.0001). As shown in Fig. 3, subtype 6
has the highest proportion of subjects with one or two APOE

ε4 alleles, whereas subtypes 1, 4, and 5 have relatively low
proportions of subjects with one or two ε4 alleles. MCI sub-
types 2 and 3 would have intermediate AD risk based on
APOE status. Again, these results are concordant with
image-derived features for the subtypes (Fig. 1).

3.3 Laboratory-Test Validation

Cerebrospinal fluid levels of β-amyloid, total-tau, and
phosphor-tau differed across subtypes (Fig. 4a-c, ANOVA p
< 0.0001, < 0.0001, = 0.0001, respectively). The profile of
subtype 6 differs most from the others: using the mean across
all groups (dashed horizontal line) as the reference, MCI sub-
type 6 has relatively high β-amyloid, tau, total-tau, and phos-
phor-tau.

Figure 1 Image-derived subtype detection results for the ADNI-2 data
set. a Principal component analysis (PCA) plot of MCA subtypes.
Component 1 and Component 2 are the first and second principal

components, respectively. b Variable importance, ranked by effect size
(η2). c Neuroimaging variable profiles displayed as a heatmap across
MCI subtypes.

Table 1 Associations between MCI subtypes 1–6 and clinical variables, reported as mean ± standard deviation, and ANOVA p-value.

MCI Subtype

Clinical Variable 1 2 3 4 5 6 P-value

ADAS11 10.27±4.79 9.70±4.08 13.04±5.07 7.45±3.13 6.60±3.09 11.51±4.27 <0.001

ASAS13 15.88±6.43 15.92±6.07 20.57±6.45 11.75±4.93 10.50±4.37 19.26±6.28 <0.001

PACC_digit -5.76±3.32 -5.96±3.67 -8.14±4.41 -3.46±3.20 -3.31±2.91 -8.74±4.50 <0.001

PACC_trials_b -4.80±3.01 -4.99±3.19 -6.98±3.60 -2.86±2.89 -2.64±2.59 -7.63±3.65 <0.001

RAVLT_perc_forgetting 5.09±2.10 4.91±2.33 5.71±2.59 3.97±2.56 4.07±2.27 5.51±2.47 <0.001

RAVLT_immediate 34.79±10.27 34.16±8.91 30.25±8.36 41.70±11.24 37.97±9.87 32.82±8.53 <0.001
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4 Discussion

Neuropsychiatric disorders have historically been demarcated
by symptoms and signs. We have demonstrated that unsuper-
vised machine learning can be applied to image-derived bio-
markers from the ADNI-2 cohort to detect MCI subtypes with
distinct clinical features, including cognitive-test results, ge-
netic profile, and clinical-laboratory values. Of note, valida-
tion results for the subtypes we detected are concordant across
clinical, laboratory and genetic results, indicating that the sub-
types are clinically valid, rather than statistical artifacts.

With respect toMCI, to our knowledge there is no previous
peer-reviewed report describing the application of unsuper-
vised machine learning to derive MCI subtypes. The literature
indicates that subtypes have been assigned based on clinical
criteria [18–20]. However, supervised machine learning has
been applied extensively to assign patients to clinically
established MCI subtypes [21–23].

Limitations of this analysis include restriction to a relative-
ly small number of biomarkers, and lack of a simple method
for summarizing subgroup differences. We plan to greatly
extend this analysis to include DTI and genetic data as indi-
cators (in which case the latter would not be used for

Figure 2 Associations between MCI subtype and functional clinical assessments; see text for assessment details.

Figure 3 Histograms of APOE status (number of ε4 alleles) across MCI
subtypes.
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validation). In addition, we will extend validation to include
models derived from supervised learning; to the extent that
cross validation of these models indicates high classification
accuracy, those results would indicate valid—i.e., separable—
subtypes. Ultimately, before applying subtypes derived from
machine learning to foster precision medicine, researchers
must validate these subtypes in clinical trials.

Our subtype-detection framework is modular, and is therefore
easily extended. For example, we could add t-Distributed
Stochastic Neighbor Embedding [24] to the visualizationmodule
for visualizing high-dimensional data. Furthermore, we have al-
ready implemented several clustering methods, in addition to
BIRCH [11]. For multimodal neuroimaging data, we can use
joint embedding to extract latent variables that represent shared
information across different modalities, and then perform clus-
tering based on the latent-variable representation.
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